Числовые последовательности: примеры и контрпримеры

- 1. $a_n = (-1)^n$ ограничена, но не имеет предела, т.к. $a_{2n} \to 1, a_{2n+1} \to (-1)$
- 2. $a_n = \frac{(-1)^n}{n}$ сходится, достигает точной верхней и точной нижней граней: $\min\{a_n\} = \inf\{a_n\} < \lim a_n < \max\{a_n\} = \sup\{a_n\}$
- $3. \ a_n = (-1)^n \cdot (1 + \frac{1}{n})$ не имеет предела, достигает точной верхней и точной нижней граней: $\min\{a_n\} = \inf\{a_n\} < \underline{\lim} \ a_n, \ \overline{\lim} \ a_n < \sup\{a_n\} = \max\{a_n\}$
- 4. $a_n = (-1)^n \cdot (1 \frac{1}{n})$ не имеет предела, не достигает ни точной верхней, ни точной нижней граней: $\inf\{a_n\} = \underline{\lim} \ a_n$, $\overline{\lim} \ a_n = \sup\{a_n\}$
- 5. $a_n = \frac{1000^n}{n!}$ монотонно возрастает до n = 999, монотонно убывает с n = 1000
- 6. $a_n = \ln n$ монотонно возрастает и не ограничена сверху, но $(a_n a_{n-1}) \to 0$
- 7. $a_n=(1+(-1)^n)\cdot n$ не ограничена сверху (т.к. $a_{2k}\to +\infty$), но не является бесконечно большой (т.к. $a_{2k+1}=0$)
- 8. $a_n = n + (-1)^{n+1}$ стремится к $+\infty$, причем не является монотонной
- 9. $a_n = (-1)^n \cdot n$ бесконечно большая, но не стремится ни к $+\infty$, ни к $-\infty$
- 10. $a_n = \frac{1}{n} \to 0, \ b_n = n^2 \to +\infty, \ a_n \cdot b_n = n$ бесконечно большая
- 11. $a_n=\frac{1}{n^2}\to 0,\ b_n=n\to +\infty,\ a_n\cdot b_n=\frac{1}{n}$ бесконечно малая
- 12. $a_n = 2 + (-1)^n$, $b_n = 2 + (-1)^{n+1}$, $\overline{\lim} (a_n + b_n) < \overline{\lim} a_n + \overline{\lim} b_n$, $\overline{\lim} (a_n \cdot b_n) < \overline{\lim} a_n \cdot \overline{\lim} b_n$
- 13. $a_n = \frac{1}{2n}, \, b_n = \frac{1}{n}, \, \forall n \in \mathbb{N} \, \, (a_n < b_n), \,$ но $\lim a_n = \lim b_n$
- 14. $a_n = \frac{(-1)^n}{2n}, \ b_n = \frac{1}{n}, \ b_n > |a_n|, \ b_n$ монотонно убывает, a_n не монотонна, $\lim a_n = \lim b_n = 0$
- 15. $a_n = \frac{9}{n}, \ b_n = 1 \frac{9}{n}.$ Хотя $0 = \lim a_n < \lim b_n = 1$, но $a_k > b_k$ для k < 18